Learn-to-Race Autonomous Racing Virtual Challenge hosted on www.aicrowd.com platform consisted of two tracks: Single and Multi Camera. Our UniTeam team was among the final winners in the Single Camera track. The agent is required to pass the previously unknown F1-style track in the minimum time with the least amount of off-road driving violations. In our approach, we used the U-Net architecture for road segmentation, variational autocoder for encoding a road binary mask, and a nearest-neighbor search strategy that selects the best action for a given state. Our agent achieved an average speed of 105 km/h on stage 1 (known track) and 73 km/h on stage 2 (unknown track) without any off-road driving violations. Here we present our solution and results. The code implementation is available here: https://gitlab.aicrowd.com/shivansh beohar/l2r
翻译:在www.aicrowd.com平台上,学习到Race自动竞赛虚拟挑战平台由两条轨道组成:单一和多摄像头。我们的UniTeam团队是单一摄像头赛赛程的最后赢家之一。代理必须在最短的时间内通过先前未知的F1型赛道,而越野驾驶违规次数最少。在我们的方法中,我们使用U-Net结构来进行路路路段分割、变式自动校对器编码一个道路二进制面具,以及一个为特定州选择最佳行动的近邻搜索战略。我们的代理在第一(已知赛道)阶段实现了105公里/小时的平均速度,在第二(未知赛道)阶段实现了73公里/小时的平均速度,没有发生任何越野驾驶违规事件。我们在这里介绍了我们的解决办法和结果。代码的落实情况可在这里查阅:https://gitlab.aicrowd.com/shivanshboohar/l2r。