Recent work has considered personalized route planning based on user profiles, but none of it accounts for human trust. We argue that human trust is an important factor to consider when planning routes for automated vehicles. This paper presents a trust-based route planning approach for automated vehicles. We formalize the human-vehicle interaction as a partially observable Markov decision process (POMDP) and model trust as a partially observable state variable of the POMDP, representing the human's hidden mental state. We build data-driven models of human trust dynamics and takeover decisions, which are incorporated in the POMDP framework, using data collected from an online user study with 100 participants on the Amazon Mechanical Turk platform. We compute optimal routes for automated vehicles by solving optimal policies in the POMDP planning, and evaluate the resulting routes via human subject experiments with 22 participants on a driving simulator. The experimental results show that participants taking the trust-based route generally reported more positive responses in the after-driving survey than those taking the baseline (trust-free) route. In addition, we analyze the trade-offs between multiple planning objectives (e.g., trust, distance, energy consumption) via multi-objective optimization of the POMDP. We also identify a set of open issues and implications for real-world deployment of the proposed approach in automated vehicles.
翻译:最近的工作考虑了基于用户概况的个性化路线规划,但其中没有任何一项是人类信任。我们认为,在规划自动车辆路线时,人类信任是一个重要的考虑因素。本文件介绍了一种基于信任的自动车辆路线规划方法。我们正式将载人车辆互动作为部分可见的Markov决策程序(POMDP)和模型信任作为部分可观察的POMDP状态变量,代表了人类隐蔽的精神状态。我们建立了由数据驱动的人类信任动态和接管决定模型,这些模型被纳入了POMDP框架,我们利用了在亚马逊机械土耳其平台上与100名参与者进行的在线用户研究所收集的数据。我们通过解决POMDP规划中的最佳政策,对自动车辆的最佳路线进行了计算,并通过驾驶模拟器的22名参与者进行了人类主题实验,对由此形成的路线进行了评估。实验结果表明,采用基于信任的路线的参与者在后驱动调查中通常比采用基线(无信任)途径的参与者报告更积极的反应。此外,我们分析了多种规划目标(例如,信任、距离、能源消耗)之间的权衡。我们还通过多目的汽车在多目的部署中确定了对PDP的真正影响。