Object-centric representations form the basis of human perception, and enable us to reason about the world and to systematically generalize to new settings. Currently, most works on unsupervised object discovery focus on slot-based approaches, which explicitly separate the latent representations of individual objects. While the result is easily interpretable, it usually requires the design of involved architectures. In contrast to this, we propose a comparatively simple approach - the Complex AutoEncoder (CAE) - that creates distributed object-centric representations. Following a coding scheme theorized to underlie object representations in biological neurons, its complex-valued activations represent two messages: their magnitudes express the presence of a feature, while the relative phase differences between neurons express which features should be bound together to create joint object representations. In contrast to previous approaches using complex-valued activations for object discovery, we present a fully unsupervised approach that is trained end-to-end - resulting in significant improvements in performance and efficiency on simple multi-object datasets. Further, we show that the CAE achieves competitive or better unsupervised object discovery performance compared to a state-of-the-art slot-based approach while being up to 100 times faster to train.
翻译:以物体为中心的表达方式构成人类感知的基础, 并使我们能够了解世界, 并系统地推广到新的设置。 目前, 大多数关于不受监督的物体发现方法的工作都侧重于基于时间档的方法, 这种方法明确区分了单个物体的潜在表现。 虽然结果很容易解释, 但通常需要设计相关结构。 与此相反, 我们提出了一个相对简单的方法 — 复杂自动编码器(CAE), 由此产生分布式的物体中心表达方式。 在一种编码方法理论化为生物神经元的物体表示方式基础, 其复杂价值的激活代表了两种信息: 它们的规模表示存在一个特性, 而神经元之间的相对阶段差异表示哪些特性应该捆绑在一起来创建共同的物体表示方式。 与以前使用复杂估值的物体发现动作来设计不同的是, 我们提出了一种完全不受监督的方法, 经过培训的端对端- 导致简单多球数据集的性能和效率得到显著改善。 此外, 我们显示 CAEEAE取得了竞争性或更不受监督的物体发现性强的特性, 与以最快速的列列100个时。