A fundamental challenge in robot perception is the coupling of the sensor pose and robot pose. This has led to research in active vision where robot pose is changed to reorient the sensor to areas of interest for perception. Further, egomotion such as jitter, and external effects such as wind and others affect perception requiring additional effort in software such as image stabilization. This effect is particularly pronounced in micro-air vehicles and micro-robots who typically are lighter and subject to larger jitter but do not have the computational capability to perform stabilization in real-time. We present a novel microelectromechanical (MEMS) mirror LiDAR system to change the field of view of the LiDAR independent of the robot motion. Our design has the potential for use on small, low-power systems where the expensive components of the LiDAR can be placed external to the small robot. We show the utility of our approach in simulation and on prototype hardware mounted on a UAV. We believe that this LiDAR and its compact movable scanning design provide mechanisms to decouple robot and sensor geometry allowing us to simplify robot perception. We also demonstrate examples of motion compensation using IMU and external odometry feedback in hardware.
翻译:机器人感知的基本挑战在于传感器的组合和机器人的组合。 这导致了对主动视觉的研究,机器人的组合被改变,使传感器转向感知感兴趣的领域。 此外,自我提升,例如气动,以及风等外部效应,会影响需要更多努力的软件认知,例如图像稳定。这种效果在微型航空飞行器和微型机器人中尤为明显,这些飞行器通常较轻,容易受到更大的干扰,但不具备实时稳定运行的计算能力。我们提出了一个新型微电子机械机械学(MEMS)镜像LIDAR系统,以改变独立于机器人运动的LIDAR视野。我们的设计还有可能在小型低功率系统中使用,因为低功率系统中昂贵的LIDAR部件可以被小机器人置于外部。我们展示了我们的模拟方法和在UAV上安装的原型硬件的效用。我们相信,LIDAR及其紧凑的移动扫描设计提供了脱压机器人机器人的机械和感应感测几何机制,使我们能够简化机器人的认知。 我们还展示了使用IMU和外部软体硬件反馈进行运动补偿的例子。</s>