We introduce a bottom-up model for simultaneously finding many boundary elements in an image, including contours, corners and junctions. The model explains boundary shape in each small patch using a 'generalized M-junction' comprising M angles and a freely-moving vertex. Images are analyzed using non-convex optimization to cooperatively find M+2 junction values at every location, with spatial consistency being enforced by a novel regularizer that reduces curvature while preserving corners and junctions. The resulting 'field of junctions' is simultaneously a contour detector, corner/junction detector, and boundary-aware smoothing of regional appearance. Notably, its unified analysis of contours, corners, junctions and uniform regions allows it to succeed at high noise levels, where other methods for segmentation and boundary detection fail.
翻译:我们引入一个自下而上的模式, 以同时在图像中找到许多边界元素, 包括轮廓、 角和交界处。 该模型使用由 M 角度和 自由移动的顶点组成的“ 通用 M 枢纽 ” 来解释每个小片段的边界形状 。 图像使用非 convex 优化来分析, 以便在每个地点合作找到 M+2 交叉点值, 由新颖的调制器实施空间一致性, 该调制器在保存角和交界处的同时减少曲折。 由此产生的“ 交界处” 同时是一个等距探测器、 角/ 枢纽探测器和 区域外观的边界意识平滑。 值得注意的是, 它对等座、 角、 交叉点和统一区域进行统一分析, 使得它能够在高噪音水平上成功, 在那里其他分割和边界探测方法都失败 。