We develop the \textit{a posteriori} error analysis of three mixed finite element formulations for rotation-based equations in elasticity, poroelasticity, and interfacial elasticity-poroelasticity. The discretisations use $H^1$-conforming finite elements of degree $k+1$ for displacement and fluid pressure, and discontinuous piecewise polynomials of degree $k$ for rotation vector, total pressure, and elastic pressure. Residual-based estimators are constructed, and upper and lower bounds (up to data oscillations) for all global estimators are rigorously derived. The methods are all robust with respect to the model parameters (in particular, the Lam\'e constants), they are valid in 2D and 3D, and also for arbitrary polynomial degree $k\geq 0$. The error behaviour predicted by the theoretical analysis is then demonstrated numerically on a set of computational examples including different geometries on which we perform adaptive mesh refinement guided by the \textit{a posteriori} error estimators.
翻译:我们开发了用于弹性、孔径度和内部弹性-多动性旋转方程式的三种混合有限元素配方的误差分析。 离异性使用1美元和1美元等同度的限定元素, 用于流离和流体压力, 以及不连续的片段多数值, 用于旋转矢量、 总体压力和弹性压力。 基于残留的估测器已经建成, 对所有全球估测器的上限和下限( 直至数据振荡) 进行了严格分析。 在模型参数( 特别是Lam\ e 常数) 方面, 方法都非常健全, 在 2D 和 3D 中有效, 以及任意的多元度 $k\ geq 0 。 理论分析所预测的错误行为随后在一组计算示例上进行了数字化演示, 其中包括我们用\ trextita possitia 差错数来进行调校准的不同地理比例。