Recently normalizing flows (NFs) have demonstrated state-of-the-art performance on modeling 3D point clouds while allowing sampling with arbitrary resolution at inference time. However, these flow-based models still require long training times and large models for representing complicated geometries. This work enhances their representational power by applying mixtures of NFs to point clouds. We show that in this more general framework each component learns to specialize in a particular subregion of an object in a completely unsupervised fashion. By instantiating each mixture component with a comparatively small NF we generate point clouds with improved details compared to single-flow-based models while using fewer parameters and considerably reducing the inference runtime. We further demonstrate that by adding data augmentation, individual mixture components can learn to specialize in a semantically meaningful manner. We evaluate mixtures of NFs on generation, autoencoding and single-view reconstruction based on the ShapeNet dataset.
翻译:最近的正常流动(NFs)显示了在3D点云模型上最先进的性能,同时允许在推论时间以任意的分辨率进行取样。然而,这些流动模型仍然需要长时间的训练时间和代表复杂地貌的大型模型。这项工作通过将NF的混合物用于指向云层来增强它们的代表性力量。我们在这个更为笼统的框架内显示,每个组成部分都学会以完全不受监督的方式在特定次区域专门研究一个物体。通过以相对较小的NF来即时利用相对较小的NF来生成点云,与单流模型相比,其细节更加完善,同时使用较少的参数并大大减少推论运行时间。我们进一步证明,通过增加数据增强,单个混合组成部分可以学会以具有体积意义的方式专门化。我们根据 ShapeNet 数据集 来评估关于生成、自动编码和单视重建的NF的混合物。