In recommendation scenarios, there are two long-standing challenges, i.e., selection bias and data sparsity, which lead to a significant drop in prediction accuracy for both Click-Through Rate (CTR) and post-click Conversion Rate (CVR) tasks. To cope with these issues, existing works emphasize on leveraging Multi-Task Learning (MTL) frameworks (Category 1) or causal debiasing frameworks (Category 2) to incorporate more auxiliary data in the entire exposure/inference space D or debias the selection bias in the click/training space O. However, these two kinds of solutions cannot effectively address the not-missing-at-random problem and debias the selection bias in O to fit the inference in D. To fill the research gaps, we propose a Direct entire-space Causal Multi-Task framework, namely DCMT, for post-click conversion prediction in this paper. Specifically, inspired by users' decision process of conversion, we propose a new counterfactual mechanism to debias the selection bias in D, which can predict the factual CVR and the counterfactual CVR under the soft constraint of a counterfactual prior knowledge. Extensive experiments demonstrate that our DCMT can improve the state-of-the-art methods by an average of 1.07% in terms of CVR AUC on the five offline datasets and 0.75% in terms of PV-CVR on the online A/B test (the Alipay Search). Such improvements can increase millions of conversions per week in real industrial applications, e.g., the Alipay Search.
翻译:在建议设想中,存在两个长期的挑战,即选择偏差和数据宽度,这导致点击/培训空间O中选择偏差的预测准确性大幅下降。然而,这两种解决办法无法有效解决不流出随机率的问题,并削弱O的筛选偏差以适应D的推断。为了解决这些问题,我们建议利用多任务学习框架(第1类)或因果贬低框架(第2类)来利用多任务学习框架(第1类)或因果贬低框架(第2类)来将更多的辅助数据纳入整个曝光/推移空间D或贬低点/培训空间O的选择偏差。然而,这两种解决办法无法有效解决不流出随机率和后击换算率的预测准确准确性。 为了填补研究差距,我们提出了一个整个空间学习框架,即DCMT,用于在本文中进行点击后转换预测。具体受用户转换决定程序的启发,我们提出了一个新的反向数据机制,用以降低D的选择偏差,可以预测实际的CVR5类变的变换问题,并且用Salal-alalalalalal A testal ex ex ex ex ex ex ex ex ex ex ex a ex ex a ex a ex ex ex ex ex ex ex ex ex ex ex ex ex a ex ex a ex a ex a ex a ex a ex a ex ex ex ex a latise a labal ex ex ex ex ex latisteutal ex ex ex a ex ex ex a ex ex ex ex ex ex ex ex lab exal ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex a ex a ex a ex a ex a ex a ex a ex a ex a ex a ex a ex a ex a ex a ex a ex a ex