We consider estimating the proportion of random variables for two types of composite null hypotheses: (i) the means or medians of the random variables belonging to a non-empty, bounded interval; (ii) the means or medians of the random variables belonging to an unbounded interval that is not the whole real line. For each type of composite null hypotheses, uniform consistent estimators of the proportion of false null hypotheses are constructed respectively for random variables whose distributions are members of a Type I location-shift family or are members of the Gamma family. Further, uniformly consistent estimators of certain functions of a bounded null on the means or medians are provided for the two types of random variables mentioned earlier. These functions are continuous and of bounded variation. The estimators are constructed via solutions to Lebesgue-Stieltjes integral equations and harmonic analysis, do not rely on a concept of p-value, can be used to construct adaptive false discovery rate procedures and adaptive false nondiscovery rate procedures for multiple hypothesis testing, can be used in Bayesian inference via mixture models, and may be used to estimate the sparsity level in high-dimensional Gaussian linear models.


翻译:我们考虑估计两种复合无效假设的随机变量比例:(一) 属于非空、约束间隔的随机变量的手段或中位数;(二) 属于非封闭间隔、非整个真实线的随机变量的手段或中位数;(二) 属于非封闭间隔、非整个真实线的随机变量的手段或中位数;对于每一种复合无效假设,对假无效假设比例的统一一致估计器分别针对分布为I类地点-轮档家庭成员或伽马族成员的随机变量进行构建。此外,对上文提到的两种随机变量类别,可以统一一致地对手段或中位数上捆绑的任意任意变量的某些功能进行估计。这些功能是连续的,是受约束的变异。这些估计器是通过 Lebesgue-Stieltjes 集成方和调心分析的解决方案构建的,不依赖 p-价值概念,可以用来构建适应性错误发现率程序和适应性不易分率程序,可以通过混合模型在Bayesian Indiversereal 模型中使用。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月27日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员