The numerical approximation of the Boltzmann collision operator presents significant challenges arising from its high dimensionality, nonlinear structure, and nonlocal integral form. In this work, we propose a Fourier Neural Operator (FNO) based framework to learn the Boltzmann collision operator and its simplified BGK model across different dimensions. The proposed operator learning approach efficiently captures the mapping between the distribution functions in either sequence-to-sequence or point to point manner, without relying on fine grained discretization and large amount of data. To enhance physical consistency, conservation constraints are embedded into the loss functional to enforce improved adherence to the fundamental conservation laws of mass, momentum, and energy compared with the original FNO framework. Several numerical experiments are presented to demonstrate that the modified FNO can efficiently achieve the accurate and physically consistent results, highlighting its potential as a promising framework for physics constrained operator learning in kinetic theory and other nonlinear integro-differential equations.
翻译:暂无翻译