Blind source separation algorithms such as independent component analysis (ICA) are widely used in the analysis of neuroimaging data. In order to leverage larger sample sizes, different data holders/sites may wish to collaboratively learn feature representations. However, such datasets are often privacy-sensitive, precluding centralized analyses that pool the data at a single site. In this work, we propose a differentially private algorithm for performing ICA in a decentralized data setting. Conventional approaches to decentralized differentially private algorithms may introduce too much noise due to the typically small sample sizes at each site. We propose a novel protocol that uses correlated noise to remedy this problem. We show that our algorithm outperforms existing approaches on synthetic and real neuroimaging datasets and demonstrate that it can sometimes reach the same level of utility as the corresponding non-private algorithm. This indicates that it is possible to have meaningful utility while preserving privacy.


翻译:独立部件分析(ICA)等盲人源分离算法在分析神经成像数据时被广泛使用。为了利用较大的样本规模,不同的数据持有人/站点可能希望合作学习特征说明。然而,这类数据集往往对隐私敏感,排除了集中分析,将数据集中到一个站点。在这项工作中,我们提出在分散化的数据环境中执行ICA的有差别的私人算法。分散化的私人算法的常规方法可能会由于每个站点的典型样本规模较小而带来过多的噪音。我们提出了使用相关噪音来纠正这一问题的新协议。我们表明,我们的算法比合成和真实神经成像数据集的现有方法要强,并表明它有时可以达到与相应的非私人算法相同的效用水平。这表明,在保护隐私的同时,有可能有有意义的效用。

0
下载
关闭预览

相关内容

【机器学习术语宝典】机器学习中英文术语表
专知会员服务
61+阅读 · 2020年7月12日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
分布式并行架构Ray介绍
CreateAMind
10+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月20日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关VIP内容
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
61+阅读 · 2020年7月12日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
相关资讯
分布式并行架构Ray介绍
CreateAMind
10+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月20日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员