Online learning to rank (OLTR) interactively learns to choose lists of items from a large collection based on certain click models that describe users' click behaviors. Most recent works for this problem focus on the stochastic environment where the item attractiveness is assumed to be invariant during the learning process. In many real-world scenarios, however, the environment could be dynamic or even arbitrarily changing. This work studies the OLTR problem in both stochastic and adversarial environments under the position-based model (PBM). We propose a method based on the follow-the-regularized-leader (FTRL) framework with Tsallis entropy and develop a new self-bounding constraint especially designed for PBM. We prove the proposed algorithm simultaneously achieves $O(\log{T})$ regret in the stochastic environment and $O(m\sqrt{nT})$ regret in the adversarial environment, where $T$ is the number of rounds, $n$ is the number of items and $m$ is the number of positions. We also provide a lower bound of order $\Omega(m\sqrt{nT})$ for adversarial PBM, which matches our upper bound and improves over the state-of-the-art lower bound. The experiments show that our algorithm could simultaneously learn in both stochastic and adversarial environments and is competitive compared to existing methods that are designed for a single environment.


翻译:在线学习对( OLTR) 进行互动排序( OLTR), 以根据描述用户点击行为的某些点击模型从大型收藏中选择项目列表。 这个问题的近期工作大多侧重于在学习过程中假定该物品的吸引力是变化无常的随机环境。 然而, 在许多现实世界情景中, 环境可能是动态的, 甚至任意变化。 这项工作在基于位置的模型( PBM) 下研究在随机和对抗环境中的 OLTR 问题。 我们提出了一个基于后续固定领导( FTRL) 框架( FTRL) 的方法, 以 Tsalllis entropy (FTRL) 为基础, 并开发了专门为 PBM 设计的新的自我约束限制环境。 我们证明, 提议的算法同时实现了 $O( log{ T} ), 在基于基于位置的模型( $T$T) 和 对抗环境中的 $O( mqr) 令人遗憾。, 美元可以是回合中的竞争性项目数量, 美元, 和 美元是用于我们当前测试中的高级环境。 我们还设定的 $\\\ Om_ 校程- trest- trest- 和 展示的排序中, 和 显示一个更低的比 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员