In this paper we present the initial screening order problem, a crucial step within candidate screening. It involves a human-like screener with an objective to find the first k suitable candidates rather than the best k suitable candidates in a candidate pool given an initial screening order. The initial screening order represents the way in which the human-like screener arranges the candidate pool prior to screening. The choice of initial screening order has considerable effects on the selected set of k candidates. We prove that under an unbalanced candidate pool (e.g., having more male than female candidates), the human-like screener can suffer from uneven efforts that hinder its decision-making over the protected, under-represented group relative to the non-protected, over-represented group. Other fairness results are proven under the human-like screener. This research is based on a collaboration with a large company to better understand its hiring process for potential automation. Our main contribution is the formalization of the initial screening order problem which, we argue, opens the path for future extensions of the current works on ranking algorithms, fairness, and automation for screening procedures.
翻译:暂无翻译