Great advances in deep neural networks (DNNs) have led to state-of-the-art performance on a wide range of tasks. However, recent studies have shown that DNNs are vulnerable to adversarial attacks, which have brought great concerns when deploying these models to safety-critical applications such as autonomous driving. Different defense approaches have been proposed against adversarial attacks, including: a) empirical defenses, which usually can be adaptively attacked again without providing robustness certification; and b) certifiably robust approaches which consist of robustness verification providing the lower bound of robust accuracy against any attacks under certain conditions and corresponding robust training approaches. In this paper, we systematize the certifiably robust approaches and related practical and theoretical implications and findings. We also provide the first comprehensive benchmark on existing robustness verification and training approaches on different datasets. In particular, we 1) provide a taxonomy for the robustness verification and training approaches, as well as summarize the methodologies for representative algorithms, 2) reveal the characteristics, strengths, limitations, and fundamental connections among these approaches, 3) discuss current research progresses, theoretical barriers, main challenges, and future directions for certifiably robust approaches for DNNs, and 4) provide an open-sourced unified platform to evaluate over 20 representative certifiably robust approaches for a wide range of DNNs.


翻译:深入的神经网络(DNNs)取得巨大进步,导致在一系列广泛任务上取得最先进的实绩;然而,最近的研究表明,DNNs很容易受到对抗性攻击,这在将这些模型用于安全关键应用(如自主驱动)时引起了极大的关注;针对敌对性攻击提出了不同的防御方法,包括:(a) 经验防御,通常可以再次因地制宜地攻击,而不提供稳健的认证;和(b) 确实可靠的可靠方法,包括稳健的核查,提供在某些条件下对任何攻击的可靠准确性较低约束,以及相应的稳健的培训方法;在本文件中,我们将可证实的稳健的方法以及相关的实际和理论影响和研究结果系统化。我们还为现有稳健的稳健性核查和不同数据集的培训方法提供了第一个全面基准。 特别是,我们(1) 为稳健健的核查和培训方法提供分类,并概述代表性算法的方法,2 揭示这些方法的特点、强、强、局限性和基本联系,3) 讨论目前的研究进展、理论障碍、主要挑战和未来方向。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2020年12月28日
专知会员服务
44+阅读 · 2020年10月31日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
【新书】Python编程基础,669页pdf
专知会员服务
187+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【深度学习基础】4. Recurrent Neural Networks
微信AI
16+阅读 · 2017年7月19日
Arxiv
8+阅读 · 2021年10月5日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
37+阅读 · 2021年2月10日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
18+阅读 · 2019年1月16日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
23+阅读 · 2018年10月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【深度学习基础】4. Recurrent Neural Networks
微信AI
16+阅读 · 2017年7月19日
相关论文
Top
微信扫码咨询专知VIP会员