In this paper we present new constructive methods, random and deterministic, for the efficient subsampling of finite frames in $\mathbb C^m$. Based on a suitable random subsampling strategy, we are able to extract from any given frame with bounds $0<A\le B<\infty$ (and condition $B/A$) a similarly conditioned reweighted subframe consisting of merely $\mathcal{O}(m\log m)$ elements. Further, utilizing a deterministic subsampling method based on principles developed by Batson, Spielman, and Srivastava to control the spectrum of sums of Hermitian rank-1 matrices, we are able to reduce the number of elements to $\mathcal{O}(m)$ (with a constant close to one). By controlling the weights via a preconditioning step, we can, in addition, preserve the lower frame bound in the unweighted case. This permits the derivation of new quasi-optimal unweighted (left) Marcinkiewicz-Zygmund inequalities for $L_2(D,\nu)$ with constructible node sets of size $\mathcal{O}(m)$ for $m$-dimensional subspaces of bounded functions. Those can be applied e.g. for (plain) least-squares sampling reconstruction of functions, where we obtain new quasi-optimal results avoiding the Kadison-Singer theorem. Numerical experiments indicate the applicability of our results.


翻译:在本文中,我们展示了新的建设性方法,随机和确定性的方法,用于以$\mathbb C $m美元对限值框架进行高效的亚抽样。基于一个合适的随机亚抽样战略,我们能够从任何特定框架中提取一个类似条件的重新加权子框架,其范围为$<A\le B ⁇ infty$(和条件$B/A$),仅包含$mathcal{O}(m\log m) 元素。此外,利用一种基于Batson、Spielman和Srivastava制定的原则的确定性亚抽样方法,以控制Hermitian 级-1 矩阵总值的可应用性范围(2) 将元素数量减少到$\mathcal{O}(m) 。通过设定性步骤控制重量,我们还可以保留未加权情况下的下限框架。这可以使新的准优度(左) Marcinwiz- Zygtal=美元 等值的计算结果。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员