Recent advancements in finite element methods allows for the implementation of mesh cells with curved edges. In the present work, we develop the tools necessary to employ multiply connected mesh cells, i.e. cells with holes, in planar domains. Our focus is efficient evaluation the $H^1$ semi-inner product and $L^2$ inner product of implicitly-defined finite element functions of the type arising in boundary element based finite element methods (BEM-FEM) and virtual element methods (VEM). These functions may be defined by specifying a polynomial Laplacian and a continuous Dirichlet trace. We demonstrate that these volumetric integrals can be reduced to integrals along the boundaries of mesh cells, thereby avoiding the need to perform any computations in cell interiors. The dominating cost of this reduction is solving a relatively small Nystrom system to obtain a Dirichlet-to-Neumann map, as well as the solution of two more Nystrom systems to obtain an ``anti-Laplacian'' of a harmonic function, which is used for computing the $L^2$ inner product. We demonstrate that high-order accuracy can be achieved with several numerical examples.
翻译:在目前的工作中,我们开发了必要的工具,以便在平板域中使用多相连接的网格,即有孔的细胞。我们的重点是高效评估1美元半内产物和2美元内产物,这些内产物由以边界元素为基础的有限元素方法(BEM-FEM)和虚拟元素方法(VEM)中产生的那种隐含定义的有限元素功能组成。这些功能可以通过指定一个多元拉帕西和连续的 Dirichlet 跟踪来定义。我们证明这些体积组件可以被压缩成沿网格区域界限的集成体,从而避免在细胞内部进行任何计算。这种减少的主要成本是解决一个相对较小的Nystrom系统,以获得一个基于有限元素的方法(BEM-FEM)和虚拟元素方法(VEM),以及两个更多的Nystromy系统获得一个“anti-Laplaceian”的调理功能的解决方案,用于计算 $L_2美元内部产品。我们证明,可以实现几个高度的精确度。</s>