Digital twins (DT) are often defined as a pairing of a physical entity and a corresponding virtual entity mimicking certain aspects of the former depending on the use-case. In recent years, this concept has facilitated numerous use-cases ranging from design to validation and predictive maintenance of large and small high-tech systems. Although growing in popularity in both industry and academia, digital twins and the methodologies for developing and maintaining them differ vastly. To better understand these differences and similarities, we performed a semi-structured interview research study with 19 professionals from industry and academia who are closely associated with different lifecycle stages of the corresponding digital twins. In this paper, we present our analysis and findings from this study, which is based on eight research questions (RQ). We present our findings per research question. In general, we identified an overall lack of uniformity in terms of the understanding of digital twins and used tools, techniques, and methodologies for their development and maintenance. Furthermore, considering that digital twins are software intensive systems, we recognize a significant growth potential for adopting more software engineering practices, processes, and expertise in various stages of a digital twin's lifecycle.
翻译:暂无翻译