This study considers tests for coefficient randomness in predictive regressions. Our focus is on how tests for coefficient randomness are influenced by the persistence of random coefficient. We find that when the random coefficient is stationary, or I(0), Nyblom's (1989) LM test loses its optimality (in terms of power), which is established against the alternative of integrated, or I(1), random coefficient. We demonstrate this by constructing tests that are more powerful than the LM test when random coefficient is stationary, although these tests are dominated in terms of power by the LM test when random coefficient is integrated. This implies that the best test for coefficient randomness differs from context to context, and practitioners should take into account the persistence of potentially random coefficient and choose from several tests accordingly. We apply tests for coefficient constancy to real data. The results mostly reverse the conclusion of an earlier empirical study.
翻译:暂无翻译