Allocation of scarce healthcare resources under limited logistic and infrastructural facilities is a major issue in the modern society. We consider the problem of allocation of healthcare resources like vaccines to people or hospital beds to patients in an online manner. Our model takes into account the arrival of resources on a day-to-day basis, different categories of agents, the possible unavailability of agents on certain days, and the utility associated with each allotment as well as its variation over time. We propose a model where priorities for various categories are modelled in terms of utilities of agents. We give online and offline algorithms to compute an allocation that respects eligibility of agents into different categories, and incentivizes agents not to hide their eligibility for some category. The offline algorithm gives an optimal allocation while the on-line algorithm gives an approximation to the optimal allocation in terms of total utility. Our algorithms are efficient, and maintain fairness among different categories of agents. Our models have applications in other areas like refugee settlement and visa allocation. We evaluate the performance of our algorithms on real-life and synthetic datasets. The experimental results show that the online algorithm is fast and performs better than the given theoretical bound in terms of total utility. Moreover, the experimental results confirm that our utility-based model correctly captures the priorities of categories


翻译:在有限的后勤和基础设施条件下分配医疗资源,是现代社会面临的一个主要问题。我们考虑在线分配医疗资源的问题,例如给人们分配疫苗或向患者分配病床。我们的模型考虑资源每天的到达情况、各种代理人的不同类别、某些天代理人可能不可用的情况,以及与每个分配相关的效用以及其随时间变化的情况。我们提出了一个模型,其中优先级是以代理人效用的形式建模的。我们给出了在线和离线算法,以计算一个分配,该分配尊重代理人进入不同类别的资格,并激励代理人不隐藏其某些类别的资格。离线算法给出最优分配,而在线算法则在总效用方面给出最优分配的近似值。我们的算法高效,并在不同类别的代理人之间保持公平。我们的模型在难民安置和签证分配等其他领域也有应用。我们在真实和合成数据集上评估了我们算法的性能。实验结果表明,在线算法快速,并在总效用方面优于所给出的理论限制。此外,实验结果证实,我们的基于效用的模型正确捕捉了类别的优先级。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
28+阅读 · 2022年12月26日
专知会员服务
19+阅读 · 2021年7月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月8日
Arxiv
0+阅读 · 2023年5月6日
Arxiv
0+阅读 · 2023年5月6日
Arxiv
0+阅读 · 2023年5月5日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
VIP会员
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员