The Forster transform is a method of regularizing a dataset by placing it in {\em radial isotropic position} while maintaining some of its essential properties. Forster transforms have played a key role in a diverse range of settings spanning computer science and functional analysis. Prior work had given {\em weakly} polynomial time algorithms for computing Forster transforms, when they exist. Our main result is the first {\em strongly polynomial time} algorithm to compute an approximate Forster transform of a given dataset or certify that no such transformation exists. By leveraging our strongly polynomial Forster algorithm, we obtain the first strongly polynomial time algorithm for {\em distribution-free} PAC learning of halfspaces. This learning result is surprising because {\em proper} PAC learning of halfspaces is {\em equivalent} to linear programming. Our learning approach extends to give a strongly polynomial halfspace learner in the presence of random classification noise and, more generally, Massart noise.
翻译:福斯特变换是一种常规化数据集的方法, 将它放置在 pradal 等离子体位置 中, 并维护它的某些基本特性 。 福斯特变换在包含计算机科学和功能分析的多种环境中发挥了关键的作用 。 以前的工作给了计算福斯特变换的多元时间算法, 当它们存在时 。 我们的主要结果就是第一个 prem 强烈的多元时间 算法, 来计算给定数据集的近似变换或证明不存在这种变换 。 通过利用我们强烈的多元福斯特算法, 我们获得了第一个强烈的多元时间算法, 用于学习半空空间 。 这个学习结果令人惊讶, 因为 正确的 PAC 对半空域的学习与线性编程相当 。 我们的学习方法扩大到在随机分类噪音和一般而言, Massart 噪音中给一个强烈的多元半空域学习器 。