We give the first algorithm that maintains an approximate decision tree over an arbitrary sequence of insertions and deletions of labeled examples, with strong guarantees on the worst-case running time per update request. For instance, we show how to maintain a decision tree where every vertex has Gini gain within an additive $\alpha$ of the optimum by performing $O\Big(\frac{d\,(\log n)^4}{\alpha^3}\Big)$ elementary operations per update, where $d$ is the number of features and $n$ the maximum size of the active set (the net result of the update requests). We give similar bounds for the information gain and the variance gain. In fact, all these bounds are corollaries of a more general result, stated in terms of decision rules -- functions that, given a set $S$ of labeled examples, decide whether to split $S$ or predict a label. Decision rules give a unified view of greedy decision tree algorithms regardless of the example and label domains, and lead to a general notion of $\epsilon$-approximate decision trees that, for natural decision rules such as those used by ID3 or C4.5, implies the gain approximation guarantees above. The heart of our work provides a deterministic algorithm that, given any decision rule and any $\epsilon > 0$, maintains an $\epsilon$-approximate tree using $O\!\left(\frac{d\, f(n)}{n} \operatorname{poly}\frac{h}{\epsilon}\right)$ operations per update, where $f(n)$ is the complexity of evaluating the rule over a set of $n$ examples and $h$ is the maximum height of the maintained tree.


翻译:我们给出第一个算法, 以任意的插入和删除标签示例序列维持一个大致决策树, 并在每份更新请求中以最坏情况运行时间为最坏情况运行时间提供强有力的保证。 例如, 我们展示了如何维持一个决定树, 每一个顶端在最佳的添加值$\alpha$中, 使吉尼在最佳的添加值$\ ALpha$中获得收益, 执行 $Big (\\ frac{d\, (log n)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Big) 一次更新中, 以美元为单位的任意选择, 以美元为单位的( liverfricle) 树算算法。 规则统一了贪婪决定的树算值, 不论例和标签域, 并导致一个通用的 $\\\clon- $ $ $ $ $ $ laxxxxxxxxxxxxxxxxxxxxxxxxxxxx rxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
0+阅读 · 2023年3月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
20+阅读 · 2021年9月22日
VIP会员
相关VIP内容
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员