We consider the optimization problem of cardinality constrained maximization of a monotone submodular set function $f:2^U\to\mathbb{R}_{\geq 0}$ (SM) with noisy evaluations of $f$. In particular, it is assumed that we do not have value oracle access to $f$, but instead for any $X\subseteq U$ and $u\in U$ we can take samples from a noisy distribution with expected value $f(X\cup\{u\})-f(X)$. Our goal is to develop algorithms in this setting that take as few samples as possible, and return a solution with an approximation guarantee relative to the optimal with high probability. We propose the algorithm Confident Threshold Greedy (CTG), which is based on the threshold greedy algorithm of Badanidiyuru and Vondrak [1] and samples adaptively in order to produce an approximate solution with high probability. We prove that CTG achieves an approximation ratio arbitrarily close to $1-1/e$, depending on input parameters. We provide an experimental evaluation on real instances of SM and demonstrate the sample efficiency of CTG.
翻译:暂无翻译