Spectral precision matrix, the inverse of a spectral density matrix, is an object of central interest in frequency-domain analysis of multivariate time series. Estimation of spectral precision matrix is a key step in calculating partial coherency and graphical model selection of stationary time series. When the dimension of a multivariate time series is moderate to large, traditional estimators of spectral density matrices such as averaged periodograms tend to be severely ill-conditioned, and one needs to resort to suitable regularization strategies involving optimization over complex variables. In this work, we propose complex graphical Lasso (CGLASSO), an $\ell_1$-penalized estimator of spectral precision matrix based on local Whittle likelihood maximization. We develop fast $\textit{pathwise coordinate descent}$ algorithms for implementing CGLASSO on large dimensional time series data sets. At its core, our algorithmic development relies on a ring isomorphism between complex and real matrices that helps map a number of optimization problems over complex variables to similar optimization problems over real variables. This finding may be of independent interest and more broadly applicable for high-dimensional statistical analysis with complex-valued data. We also present a complete non-asymptotic theory of our proposed estimator which shows that consistent estimation is possible in high-dimensional regime as long as the underlying spectral precision matrix is suitably sparse. We compare the performance of CGLASSO with competing alternatives on simulated data sets, and use it to construct partial coherence network among brain regions from a real fMRI data set.
翻译:暂无翻译