In high-dimensional data analysis, bi-level sparsity is often assumed when covariates function group-wisely and sparsity can appear either at the group level or within certain groups. In such cases, an ideal model should be able to encourage the bi-level variable selection consistently. Bi-level variable selection has become even more challenging when data have heavy-tailed distribution or outliers exist in random errors and covariates. In this paper, we study a framework of high-dimensional M-estimation for bi-level variable selection. This framework encourages bi-level sparsity through a computationally efficient two-stage procedure. In theory, we provide sufficient conditions under which our two-stage penalized M-estimator possesses simultaneous local estimation consistency and the bi-level variable selection consistency if certain nonconvex penalty functions are used at the group level. Both our simulation studies and real data analysis demonstrate satisfactory finite sample performance of the proposed estimators under different irregular settings.
翻译:在高维数据分析中,如果在组一级或某些组内出现共变函数,则往往假设双层宽度,而多层次则可以在组一级或某些组内出现。在这种情况下,理想模式应能鼓励一致的双层变量选择。当数据存在任意错误和共变时,双层变量选择就更加具有挑战性。在本文中,我们研究了双层变量选择的高层M估计框架。这个框架通过一种计算效率高的两阶段程序鼓励双层宽度。理论上,我们提供了充分的条件,使受处罚的两阶段M估计器具有同时的地方估算一致性和双层变量选择一致性,如果在组一级使用某些非对等罚款功能的话。我们的模拟研究和真实数据分析都表明,在不同非正常情况下,拟议的估计器的抽样表现是令人满意的。