Self-adjoint operators on infinite-dimensional spaces with continuous spectra are abundant but do not possess a basis of eigenfunctions. Rather, diagonalization is achieved through spectral measures. The SpecSolve package [SIAM Rev., 63(3) (2021), pp. 489--524] computes spectral measures of general (self-adjoint) differential and integral operators by combining state-of-the-art adaptive spectral methods with an efficient resolvent-based strategy. The algorithm achieves arbitrarily high orders of convergence in terms of a smoothing parameter, allowing computation of both discrete and continuous spectral components. This article extends SpecSolve to two important classes of operators: singular integro-differential operators and general operator pencils. Essential computational steps are performed with off-the-shelf spectral methods, including spectral methods on the real line, the ultraspherical spectral method, Chebyshev and Fourier spectral methods, and the ($hp$-adaptive and sparse) ultraspherical spectral element method. This collection illustrates the power and flexibility of SpecSolve's "discretization-oblivious" paradigm.
翻译:具有连续光谱的无孔不入空间的自合操作者数量丰富,但并不拥有电子元件的基础,而是通过光度测量实现分解。SpecSolve包[SIAM Rev.,63(3)(2021),pp.489-524]计算普通(自合)差异和整体操作者的光谱度量,将最先进的适应性光谱方法与有效的固态调控器基战略相结合。算法在光滑参数方面达到任意高的趋同顺序,允许计算离散和连续光谱组成部分。这一条将SpecSolve延伸至两种重要的操作者类别:单一的内脏差异操作者和一般操作铅笔。基本计算步骤是用现成光谱方法进行的,包括实际线上的光谱法、超光谱法、Chebyshev和4ier光谱方法,以及超光谱谱元和稀有的(hp$适应和稀有)超频谱元元元元元元元元元元元元元元元元元元元元元元元元元元元元的光谱元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元