The large amount of data collected in buildings makes energy management smarter and more energy efficient. This study proposes a design and implementation methodology of data-driven heating, ventilation, and air conditioning (HVAC) control. Building thermodynamics is modeled using a symbolic regression model (SRM) built from the collected data. Additionally, an HVAC system model is also developed with a data-driven approach. A model predictive control (MPC) based HVAC scheduling is formulated with the developed models to minimize energy consumption and peak power demand and maximize thermal comfort. The performance of the proposed framework is demonstrated in the workspace in the actual campus building. The HVAC system using the proposed framework reduces the peak power by 16.1\% compared to the widely used thermostat controller.
翻译:通过建立数据驱动的暖通空调系统和符号回归模型,本研究提出了一个数据驱动的暖通空调控制方法。建筑物热力学使用从收集的数据构建的符号回归模型 (SRM) 进行建模。另外,还采用数据驱动的方法开发了暖通空调系统模型。在基于开发的模型的基础上,制定了基于模型预测控制 (MPC) 的暖通空调调度方案,以最小化能耗和峰值功率需求,并最大化热舒适性。该框架在实际校园建筑物的工作空间中展示了很高的性能,与广泛使用的恒温控制器相比,采用该框架的 HVAC 系统减少了 16.1\% 的峰值功率。