The quality of the video stream is key to neural network-based video analytics. However, low-quality video is inevitably collected by existing surveillance systems because of poor quality cameras or over-compressed/pruned video streaming protocols, e.g., as a result of upstream bandwidth limit. To address this issue, existing studies use quality enhancers (e.g., neural super-resolution) to improve the quality of videos (e.g., resolution) and eventually ensure inference accuracy. Nevertheless, directly applying quality enhancers does not work in practice because it will introduce unacceptable latency. In this paper, we present AccDecoder, a novel accelerated decoder for real-time and neural-enhanced video analytics. AccDecoder can select a few frames adaptively via Deep Reinforcement Learning (DRL) to enhance the quality by neural super-resolution and then up-scale the unselected frames that reference them, which leads to 6-21% accuracy improvement. AccDecoder provides efficient inference capability via filtering important frames using DRL for DNN-based inference and reusing the results for the other frames via extracting the reference relationship among frames and blocks, which results in a latency reduction of 20-80% than baselines.
翻译:视频流的质量是神经网络视频分析的关键。 但是,由于相机质量差,或者由于上游带宽限制等原因,现有监控系统不可避免地会收集低质量视频,因为低质量的视频流规程质量差,例如,上游带宽限制。为解决这一问题,现有研究使用质量增强器(例如,神经超分辨率)提高视频质量(例如,分辨率),并最终确保推断准确性。然而,直接应用质量增强器在实际中不会起作用,因为它会引入不可接受的延迟。在本文件中,我们介绍Accoder,这是用于实时和神经强化视频解析的新型加速脱钩器,通过深强化学习(DRL)选择了几个框架,以提高视频质量(例如,分辨率),并最终确保推断准确性。然而,直接应用质量增强器在实际中不会起作用,因为它会引入令人无法接受的延迟。在本文中,我们介绍Accoder,这是一个新型的加速解调器,用于实时和神经强化视频解析的视频解析器,通过Destriefle Sembering 20 Basioner 的缩标框中,在20个基准中通过DRNBe-Bres-BRADNBasy 的缩结果中,在20BRADNBas-Bres-Bres-Borm-Borm-Borm-Berview-Berview-Bres-Bres-Berview 的20的缩结果中可以提供其他20Berview 的20-Bres-Bres-res-Borm-Ber提供其他20次结果中选择其他20。