Memory disaggregation is being considered as a strong alternative to traditional architecture to deal with the memory under-utilization in data centers. Disaggregated memory can adapt to dynamically changing memory requirements for the data center applications like data analytics, big data, etc., that require in-memory processing. However, such systems can face high remote memory access latency due to the interconnect speeds. In this paper, we explore a rack-scale disaggregated memory architecture and discuss the various design aspects. We design a trace-driven simulator that combines an event-based interconnect and a cycle-accurate memory simulator to evaluate the performance of disaggregated memory system at the rack scale. Our study shows that not only the interconnect but the contention in the remote memory queues also adds significantly to remote memory access latency. We introduces a memory allocation policy to reduce the latency compared to the conventional policies. We conduct experiments using various benchmarks with diverse memory access patterns. Our study shows encouraging results towards the rack-scale memory disaggregation and acceptable average memory access latency.


翻译:内存分解被认为是处理数据中心内存利用不足的传统结构的有力替代物。分解的内存可以适应数据中心应用程序(如数据分析、大数据等)的动态变化的内存要求,这些应用程序需要模拟处理。然而,由于连接速度,这些系统可能面临高远程内存存存延缓期。在本文中,我们探索一个架式的分类内存结构,并讨论各种设计方面。我们设计了一种追踪驱动的模拟器,将基于事件的互连和循环-准确的内存模拟器结合起来,以评价在机架上分解的内存系统的性能。我们的研究显示,不仅互连性,而且远程内存列中的争议也极大地增加了远程内存存存延缓存。我们引入了一种记忆分配政策,以降低与常规政策相比的惯留时间长度。我们使用不同记忆存存存模式的各种基准进行实验。我们的研究显示,在分级内存分解和可接受的平均内存存延时,取得了令人鼓舞的成果。</s>

0
下载
关闭预览

相关内容

设计是对现有状的一种重新认识和打破重组的过程,设计让一切变得更美。
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员