Lattice-based planning techniques simplify the motion planning problem for autonomous vehicles by limiting available motions to a pre-computed set of primitives. These primitives are then combined online to generate more complex maneuvers. A set of motion primitives t-span a lattice if, given a real number t at least 1, any configuration in the lattice can be reached via a sequence of motion primitives whose cost is no more than a factor of t from optimal. Computing a minimal t-spanning set balances a trade-off between computed motion quality and motion planning performance. In this work, we formulate this problem for an arbitrary lattice as a mixed integer linear program. We also propose an A*-based algorithm to solve the motion planning problem using these primitives. Finally, we present an algorithm that removes the excessive oscillations from planned motions -- a common problem in lattice-based planning. Our method is validated for autonomous driving in both parking lot and highway scenarios.
翻译:以Lattice为基础的规划技术简化了自治车辆的机动规划问题, 将现有动议限制在一组预先计算过的原始物上。 这些原始物随后在网上合并, 产生更复杂的动作。 一组运动原始物t- span a lattice, 如果考虑到实际数字至少为1, 则通过一系列运动原始体( 其成本不超过最理想的一个因素) 来达成阵列中的任何配置。 计算一个最小的、 覆盖数组的平衡, 平衡计算运动质量和运动规划性能之间的权衡。 在这项工作中, 我们把这个问题设计成一个任意的阵列, 作为一种混合的线性程序。 我们还提出一个基于A* 的算法, 用这些原始体来解决运动的规划问题。 最后, 我们提出一个算法, 将过度的振动从计划中的动作中除去, 也就是基于拉tice 的规划中常见的问题。 我们的方法在停车场和高速公路的情景中都被验证了自主驾驶的方法 。