项目名称: 单晶铁磁纳米线系统中自旋角动量转移的基础研究

项目编号: No.61274102

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 徐永兵

作者单位: 南京大学

项目金额: 85万元

中文摘要: 自旋角动量转移(STT)效应是当今自旋电子学领域中最活跃的研究课题之一。自旋极化电流与纳米线中磁畴壁里局域磁矩相互作用产生STT效应。此效应可以实现磁畴翻转从而达到最基本的信息存储目的。因此它可以应用在新的信息存储器件开发上。本项目就是以磁单晶纳米线系统为研究对象,主要从实验的角度系统的探索STT效应,通过对单晶纳米线中磁晶各向异性的调控,研究各向异性场对STT效应引起的磁畴结构、磁畴壁形态变化的规律;同时通过改变纳米线厚度,调控轨道磁矩,研究电子轨道磁矩与自旋轨道耦合对STT效应和磁畴壁散射的贡献。通过以上研究进一步理解磁纳米线系统中STT的物理本质,促进STT理论发展,找到减小临界电流密度的新途径。为推动以STT原理设计的新一代磁存储器件、磁逻辑门以及磁纳米接触传感器的开发做些积极的探索。

中文关键词: 自旋角动量转移;轨道磁矩;自旋轨道耦合;磁畴壁磁电阻;临界电流密度

英文摘要: There is a growing interest in the use of current-induced magnetization switching, well known as spin transfer torque (STT) effect, in Spintronics. When the spin-polarised current flows through the domain wall in nanowires it will produce STT effect due to the interaction with local spin moment. This effect can realize domain switch and domain wall movement, which can be used for new generation of memory. The project is to investigate STT effect in the single crystal ferromagnetic nanowires from experimental point of view. Through controlling magnetocrystalline anisotropy in the single crystal nanowires, we will research how the magnetocrystalline anisotropy field affects domain and domain wall with STT effect; on the other side, in the way of changing thickness of nanowires to adjust orbit moment we will show how orbit momentum and spin-orbit couple contribute STT effect and domain wall scattering. From the above we will further comprehend the nature of STT effect and promote the theory of STT effect so that we can decrease the critical current density and realise new generation of memory, magnetic logic gate and magnetic nanocontact sensors.

英文关键词: Spin transfer torque(STT);Orbital moment;Spin orbit coupling;Domain wall magnetic resistance;Critical current density

成为VIP会员查看完整内容
0

相关内容

隐私计算应用白皮书, 54页pdf
专知会员服务
175+阅读 · 2021年12月18日
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
72+阅读 · 2021年7月3日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
DevOps 国际峰会 2019 · 北京站完整实录(附PPT)
DevOps时代
52+阅读 · 2019年7月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
隐私计算应用白皮书, 54页pdf
专知会员服务
175+阅读 · 2021年12月18日
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
72+阅读 · 2021年7月3日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员