In this paper, a robot navigating an environment shared with humans is considered, and a cost function that can be exploited in $\text{RRT}^\text{X}$, a randomized sampling-based replanning algorithm that guarantees asymptotic optimality, to allow for a safe motion is proposed. The cost function is a path length weighted by a danger index based on a prediction of human motion performed using either a linear stochastic model, assuming constant longitudinal velocity and varying lateral velocity, and a GMM/GMR-based model, computed on an experimental dataset of human trajectories. The proposed approach is validated using a dataset of human trajectories collected in a real world setting.
翻译:在本文中,考虑的是载人共享环境的机器人航行,成本函数可以用$\text{RRT}{{text{X}美元加以利用,这是一个基于随机抽样的重新规划算法,可以保证无症状的最佳性,从而允许安全运动。成本函数是一种路径长度,根据一种危险指数进行加权计算,该危险指数所依据的是使用线性随机模型、假设常态纵向速度和不同横向速度,以及一种基于GMM/GMR的模型,该模型在人类轨迹的实验数据集中计算。提议的方法使用在现实世界环境中收集的人类轨迹数据集加以验证。