The recent advancements in wireless technology enable connected autonomous vehicles (CAVs) to gather data via vehicle-to-vehicle (V2V) communication, such as processed LIDAR and camera data from other vehicles. In this work, we design an integrated information sharing and safe multi-agent reinforcement learning (MARL) framework for CAVs, to take advantage of the extra information when making decisions to improve traffic efficiency and safety. We first use weight pruned convolutional neural networks (CNN) to process the raw image and point cloud LIDAR data locally at each autonomous vehicle, and share CNN-output data with neighboring CAVs. We then design a safe actor-critic algorithm that utilizes both a vehicle's local observation and the information received via V2V communication to explore an efficient behavior planning policy with safety guarantees. Using the CARLA simulator for experiments, we show that our approach improves the CAV system's efficiency in terms of average velocity and comfort under different CAV ratios and different traffic densities. We also show that our approach avoids the execution of unsafe actions and always maintains a safe distance from other vehicles. We construct an obstacle-at-corner scenario to show that the shared vision can help CAVs to observe obstacles earlier and take action to avoid traffic jams.
翻译:最近无线技术的进步使得连接的自主车辆能够通过机动车辆之间的通信(V2V)收集数据,例如经过处理的LIDAR和来自其他车辆的相机数据。在这项工作中,我们为CAV设计了一个综合的信息共享和安全多剂强化学习(MARL)框架,以便在做出提高交通效率和安全的决定时利用额外信息。我们首先使用重量压轴神经神经网络(CNN)处理每个自主车辆的原始图像和点云云LIDAR数据,并与邻近的CAV分享CN-输出数据。我们然后设计一个安全的演员-批评算法,利用车辆的当地观察和通过V2V通信获得的信息来探索有效的行为规划政策,同时提供安全保障。我们利用CARLA模拟器进行实验,我们表明我们的方法提高了CAV系统在不同的CAV比率和不同的交通密度下的平均速度和舒适度的效率。我们还表明,我们的方法避免了执行不安全的行动,并且总是利用通过VVV通信获得的信息来探索一个安全的距离,以便从共同的CARC行动。