An accurate and robust localization system is crucial for autonomous vehicles (AVs) to enable safe driving in urban scenes. While existing global navigation satellite system (GNSS)-based methods are effective at locating vehicles in open-sky regions, achieving high-accuracy positioning in urban canyons such as lower layers of multi-layer bridges, streets beside tall buildings, tunnels, etc., remains a challenge. In this paper, we investigate the potential of cellular-vehicle-to-everything (C-V2X) wireless communications in improving the localization performance of AVs under GNSS-denied environments. Specifically, we propose the first roadside unit (RSU)-enabled cooperative localization framework, namely CV2X-LOCA, that only uses C-V2X channel state information to achieve lane-level positioning accuracy. CV2X-LOCA consists of four key parts: data processing module, coarse positioning module, environment parameter correcting module, and vehicle trajectory filtering module. These modules jointly handle challenges present in dynamic C-V2X networks. Extensive simulation and field experiments show that CV2X-LOCA achieves state-of-the-art performance for vehicle localization even under noisy conditions with high-speed movement and sparse RSUs coverage environments. The study results also provide insights into future investment decisions for transportation agencies regarding deploying RSUs cost-effectively.


翻译:一种准确和稳健的定位系统对于自主汽车(AVs)在城市环境下实现安全驾驶至关重要。虽然现有的基于全球导航卫星系统(GNSS)的方法在开阔天空区域中定位车辆非常有效,但在城市峡谷中实现高精度定位仍然是一个挑战,例如多层桥下的较低层,高楼旁边的街道,隧道等。在本文中,我们研究了蜂窝车辆到一切(C-V2X)无线通信在改善GNSS-拒绝环境下AV的定位性能方面的潜力。具体而言,我们提出了一种路侧装置(RSU)-支持下的协同定位框架,即CV2X-LOCA,它只使用C-V2X信道状态信息来实现车道级定位精度。CV2X-LOCA由四个关键部分组成:数据处理模块、粗定位模块、环境参数校正模块和车辆轨迹过滤模块。这些模块共同处理动态C-V2X网络中存在的挑战。广泛的模拟和现场实验表明,即使在高速运动和RSU覆盖环境稀疏的嘈杂环境下,CV2X-LOCA也能实现车辆定位的最新性能。研究结果还为交通部门未来关于有效部署RSUs的投资决策提供了深入的见解。

0
下载
关闭预览

相关内容

《6G智能轨道交通白皮书》未来移动通信论坛
专知会员服务
33+阅读 · 2022年4月14日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
24+阅读 · 2019年12月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
SSL-Lanes: 用于自动驾驶中运动预测的自监督学习
极市平台
6+阅读 · 2022年7月24日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
27+阅读 · 2023年1月5日
VIP会员
相关VIP内容
《6G智能轨道交通白皮书》未来移动通信论坛
专知会员服务
33+阅读 · 2022年4月14日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
24+阅读 · 2019年12月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
SSL-Lanes: 用于自动驾驶中运动预测的自监督学习
极市平台
6+阅读 · 2022年7月24日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员