With autonomous aerial vehicles enacting safety-critical missions, such as the Mars Science Laboratory Curiosity rover's landing on Mars, the tasks of automatically identifying and reasoning about potentially hazardous landing sites is paramount. This paper presents a coupled perception-planning solution which addresses the hazard detection, optimal landing trajectory generation, and contingency planning challenges encountered when landing in uncertain environments. Specifically, we develop and combine two novel algorithms, Hazard-Aware Landing Site Selection (HALSS) and Adaptive Deferred-Decision Trajectory Optimization (Adaptive-DDTO), to address the perception and planning challenges, respectively. The HALSS framework processes point cloud information to identify feasible safe landing zones, while Adaptive-DDTO is a multi-target contingency planner that adaptively replans as new perception information is received. We demonstrate the efficacy of our approach using a simulated Martian environment and show that our coupled perception-planning method achieves greater landing success whilst being more fuel efficient compared to a nonadaptive DDTO approach.
翻译:随着自主飞行器执行关键安全任务,例如“好奇号”在火星的着陆,自动识别和思考潜在危险着陆地点的任务非常重要。本文介绍了一种耦合的感知-规划解决方案,用于解决在不确定环境中着陆时遇到的危险检测、最佳着陆轨迹生成和应急规划挑战。具体而言,我们开发并结合了两种新颖算法——危险感知着陆点选择(HALSS)和自适应延迟决策轨迹优化(Adaptive-DDTO),以解决感知和规划方面的挑战。HALSS框架处理点云信息,以识别适宜的安全着陆区域,而自适应DDTO是一个多目标应急规划器,能够随着收到新的感知信息灵活地重新规划。我们利用模拟火星环境展示了方法的有效性,结果显示,与非自适应DDTO方法相比,我们的耦合感知-规划方法在更节省燃料的同时实现了更高的着陆成功率。