This paper is concerned with numerical solution of transport problems in heterogeneous porous media. A semi-discrete continuous-in-time formulation of the linear advection-diffusion equation is obtained by using a mixed hybrid finite element method, in which the flux variable represents both the advective and diffusive flux, and the Lagrange multiplier arising from the hybridization is used for the discretization of the advective term. Based on global-in-time and nonoverlapping domain decomposition, we propose two implicit local time-stepping methods to solve the semi-discrete problem. The first method uses the time-dependent Steklov-Poincar\'e type operator and the second uses the optimized Schwarz waveform relaxation (OSWR) with Robin transmission conditions. For each method, we formulate a space-time interface problem which is solved iteratively. Each iteration involves solving the subdomain problems independently and globally in time; thus, different time steps can be used in the subdomains. The convergence of the fully discrete OSWR algorithm with nonmatching time grids is proved. Numerical results for problems with various Pecl\'et numbers and discontinuous coefficients, including a prototype for the simulation of the underground storage of nuclear waste, are presented to illustrate the performance of the proposed local time-stepping methods.


翻译:本文涉及多种多孔介质的运输问题的数字解决办法。 通过使用混合混合的有限元素方法,获得了线性对流扩散方程式的半分时间连续配方。 混合的混合限量元素方法是通量变量代表对流和对流通通量, 混合化产生的拉格朗乘数用于对流性术语的分解。 基于全球在时和不重叠域分解, 我们提议了两种隐含的本地时间步法来解决半分解问题。 第一种方法使用基于时间的 Steklov- Poincar\'e type操作器, 第二种方法使用基于时间的Schwarz 波因波形放松(OSWR) 优化和 Robin传输条件。 对于每一种方法, 我们设计了一个空间- 时间接口问题, 以交互方式解决。 每一次混合都涉及独立和不重叠的域域域域分解, 因此可以在子域中使用两种隐含的时间步骤。 完全离的OSRW 算法与不相匹配的时间阵列的时间格操作器操作器操作器操作, 第二套式的状态模型将证明, 和地下存储机床底级的存储结果将证明,, 。 的原型的计算结果与地下存储结果与地下的模型将证实。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Arxiv
12+阅读 · 2021年3月24日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Top
微信扫码咨询专知VIP会员