This paper introduces a comprehensive, multi-stage machine learning methodology that effectively integrates information systems and artificial intelligence to enhance decision-making processes within the domain of operations research. The proposed framework adeptly addresses common limitations of existing solutions, such as the neglect of data-driven estimation for vital production parameters, exclusive generation of point forecasts without considering model uncertainty, and lacking explanations regarding the sources of such uncertainty. Our approach employs Quantile Regression Forests for generating interval predictions, alongside both local and global variants of SHapley Additive Explanations for the examined predictive process monitoring problem. The practical applicability of the proposed methodology is substantiated through a real-world production planning case study, emphasizing the potential of prescriptive analytics in refining decision-making procedures. This paper accentuates the imperative of addressing these challenges to fully harness the extensive and rich data resources accessible for well-informed decision-making.
翻译:本文介绍了一种全面的、多阶段的机器学习方法,有效地将信息系统和人工智能相结合,以增强运筹学领域内的决策过程。该提议的框架熟练地处理了现有解决方案的常见限制,例如忽略重要生产参数的数据驱动估计,而只是生成点预测,而不考虑模型的不确定性,并缺乏关于这种不确定性来源的解释。我们的方法使用Quantile回归森林生成区间预测,以及SHapley加性解释的本地和全局变体,用于研究所考虑的预测流程监控问题。所提议方法的实际适用性通过一个真实的生产计划案例得到了支持,强调了规程分析中提升决策过程的潜力。本文强调了解决这些挑战的必要性,以充分利用可供明智决策的广泛且丰富的数据资源。