We propose a general framework based on quasi-isometries to study graph simplifications. Quasi-isometries are mappings on metric spaces that preserve the distance functions within an additive and a multiplicative constant. We use them to measure the distance distortion between the original graph and the simplified graph. We also introduce a novel concept called the centre-shift, which quantifies how much a graph simplification affects the location of the graph centre. Given a quasi-isometry, we establish a weak upper bound on the centre-shift. We present methods to construct so-called partition-graphs, which are quasi-isometric graph simplifications. Furthermore, in terms of the centre-shift, we show that partition-graphs constructed in a certain way preserve the centres of trees. Finally, we also show that by storing extra numerical information, partition-graphs preserve the median of trees.
翻译:我们提出一个基于准特征的一般框架来研究图解简化。 准特征是测量测量空间的绘图, 保存一个添加和倍增常数中的距离功能。 我们用它们测量原始图和简化图解之间的距离扭曲。 我们还引入了一个叫“ 中心变换” 的新概念, 该概念量化了图解简化对图解中心位置的影响程度。 在准测量学中, 我们在中心变换点上方设置了一个薄弱的圈套。 我们提出构建所谓的分区图的方法, 它们是准几何图简化。 此外, 在中心变换方面, 我们展示了以某种方式构建的分区图保护树木中心。 最后, 我们还表明, 通过存储额外的数字信息, 分区图保存了树木的中位值 。