We study codes with parameters of $q$-ary shortened Hamming codes, i.e., $(n=(q^m-q)/(q-1), q^{n-m}, 3)_q$. At first, we prove the fact mentioned in [A.E.Brouwer et al. Bounds on mixed binary/ternary codes. IEEE Trans. Inf. Theory 44 (1998) 140-161] that such codes are optimal, generalizing it to a bound for multifold packings of radius-$1$ balls, with a corollary for multiple coverings. In particular, we show that the punctured Hamming code is an optimal $q$-fold packing with minimum distance $2$. At second, we show the existence of $4$-ary codes with parameters of shortened $1$-perfect codes that cannot be obtained by shortening a $1$-perfect code. Keywords: Hamming graph; multifold packings; multiple coverings; perfect codes.
翻译:首先,我们证明了[A.E.Brouwer 等人等在混合二元/双元代码上所描述的事实。 IEEE Trans.Inf. Theory 44 (1998) 140-161, 此类代码是最佳的, 将其概括为半径-1美元球的多倍包装,并附带多个覆盖的必然结果。我们特别表明, 穿刺的拆卸代码是一种最优的美元-倍包装,最低距离为2美元。 其次,我们表明存在4美元-百元代码,其参数是短价1美元的完美代码,无法通过缩短一美元/百元代码获得。关键词:Hamming图形;多倍包装;多重覆盖;完美代码。