Policy gradient methods are widely used in solving two-player zero-sum games to achieve superhuman performance in practice. However, it remains elusive when they can provably find a near-optimal solution and how many samples and iterations are needed. The current paper studies natural extensions of Natural Policy Gradient algorithm for solving two-player zero-sum games where function approximation is used for generalization across states. We thoroughly characterize the algorithms' performance in terms of the number of samples, number of iterations, concentrability coefficients, and approximation error. To our knowledge, this is the first quantitative analysis of policy gradient methods with function approximation for two-player zero-sum Markov games.


翻译:政策梯度方法被广泛用于解决两个玩家零和游戏,以便在实践中实现超人性能。然而,当他们能够找到近乎最佳的解决方案,以及需要多少样本和迭代时,政策梯度方法仍然难以实现。目前的文件研究自然政策梯度算法的自然延伸,以解决两个玩家零和游戏,其中功能近似用于各州的概括化。我们从样本数量、迭代次数、集中系数和近似错误等方面彻底描述算法的性能。 据我们了解,这是对政策梯度方法的首次定量分析,其功能近似值为两个玩家零和马尔科夫游戏。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
已删除
将门创投
7+阅读 · 2018年4月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2020年6月16日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
已删除
将门创投
7+阅读 · 2018年4月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员