Quantifying how individuals react to social influence is crucial for tackling collective political behavior online. While many studies of opinion in public forums focus on social feedback, they often overlook the potential for human interactions to result in self-censorship. Here, we investigate political deliberation in online spaces by exploring the hypothesis that individuals may refrain from expressing minority opinions publicly due to being exposed to toxic behavior. Analyzing conversations under YouTube videos from six prominent US news outlets around the 2020 US presidential elections, we observe patterns of self-censorship signaling the influence of peer toxicity on users' behavior. Using hidden Markov models, we identify a latent state consistent with toxicity-driven silence. Such state is characterized by reduced user activity and a higher likelihood of posting toxic content, indicating an environment where extreme and antisocial behaviors thrive. Our findings offer insights into the intricacies of online political deliberation and emphasize the importance of considering self-censorship dynamics to properly characterize ideological polarization in digital spheres.
翻译:暂无翻译