We propose an inferential approach for maximum likelihood estimation of the hidden Markov models for continuous responses. We extend to the case of longitudinal observations the finite mixture model of multivariate Gaussian distributions with Missing At Random (MAR) outcomes, also accounting for possible dropout. The resulting hidden Markov model accounts for different types of missing pattern: (i) partially missing outcomes at a given time occasion; (ii) completely missing outcomes at a given time occasion (intermittent pattern); (iii) dropout before the end of the period of observation (monotone pattern). The MAR assumption is formulated to deal with the first two types of missingness, while to account for informative dropout we assume an extra absorbing state. Maximum likelihood estimation of the model parameters is based on an extended Expectation-Maximization algorithm relying on suitable recursions. The proposal is illustrated by a Monte Carlo simulation study and an application based on historical data on primary biliary cholangitis.
翻译:我们建议一种推断方法,以便尽可能估计隐藏的马尔科夫模型,以便持续作出反应。我们将多种变式高萨分布的有限混合模型与失踪的随机(MAR)结果(MAR)联系起来,同时也考虑到可能的辍学。由此而形成的隐藏的马尔科夫模型说明了不同类型的失踪模式:(一) 特定时间部分缺失的结果;(二) 特定时间完全缺失的结果(间隙模式);(三) 观察期结束前的辍学(monoone模式) 。制定最低年度报酬的假设是为了处理头两类失踪情况,而考虑到信息丰富的辍学情况,我们假定一个额外吸收状态。模型参数的最大可能性估计是基于依赖适当循环的延长的期待-氧化算法。蒙特卡洛模拟研究以及基于初级血囊炎历史数据的应用,对该提案作了说明。