Traditionally, the least squares regression is mainly concerned with studying the effects of individual predictor variables, but strongly correlated variables generate multicollinearity which makes it difficult to study their effects. Existing methods for handling multicollinearity such as ridge regression are complicated. To resolve the multicollinearity issue without abandoning the simple least squares regression, for situations where predictor variables are in groups with strong within-group correlations but weak between-group correlations, we propose to study the effects of the groups with a group approach to the least squares regression. Using an all positive correlations arrangement of the strongly correlated variables, we first characterize group effects that are meaningful and can be accurately estimated. We then present the group approach with numerical examples and demonstrate its advantages over existing methods for handling multicollinearity. We also address a common misconception about prediction accuracy of the least squares estimated model.


翻译:传统上,最小平方回归主要涉及研究单个预测变量的影响,但密切相关的变量产生多曲线性,因此难以研究其影响。现有处理多曲线性的方法,如山脊回归的方法十分复杂。为了在不放弃简单最小平方回归的情况下解决多曲线性问题,对于预测变量属于群体内部关联性强但群体之间关联性弱的情况,我们提议研究群体的影响,对最小平方回归采用集体方法。我们首先使用极密切关联变量的所有正相关安排,确定具有实际意义并能准确估计的集团效应。然后,我们用数字实例介绍群体方法,并展示其相对于现有处理多曲线性方法的优势。我们还处理关于最小平方估计模型预测准确性的常见错误。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
29+阅读 · 2020年11月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月21日
Arxiv
0+阅读 · 2021年10月20日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员