Hands, one of the most dynamic parts of our body, suffer from blur due to their active movements. However, previous 3D hand mesh recovery methods have mainly focused on sharp hand images rather than considering blur due to the absence of datasets providing blurry hand images. We first present a novel dataset BlurHand, which contains blurry hand images with 3D groundtruths. The BlurHand is constructed by synthesizing motion blur from sequential sharp hand images, imitating realistic and natural motion blurs. In addition to the new dataset, we propose BlurHandNet, a baseline network for accurate 3D hand mesh recovery from a blurry hand image. Our BlurHandNet unfolds a blurry input image to a 3D hand mesh sequence to utilize temporal information in the blurry input image, while previous works output a static single hand mesh. We demonstrate the usefulness of BlurHand for the 3D hand mesh recovery from blurry images in our experiments. The proposed BlurHandNet produces much more robust results on blurry images while generalizing well to in-the-wild images. The training codes and BlurHand dataset are available at https://github.com/JaehaKim97/BlurHand_RELEASE.
翻译:手是我们身体最具活力的部分之一,由于它们不断的运动,容易出现模糊。然而,以前的三维手部网格恢复方法主要关注锐利的手部图像,而没有考虑由于缺乏提供模糊手图像的数据集而引起的模糊。我们首先提出了一个新颖的数据集BlurHand,其中包含带有三维基础真理的模糊手部图像。BlurHand是通过从连续的清晰手部图像中合成运动模糊来构建的,模仿真实且自然的运动模糊。除了新数据集之外,我们还提出了BlurHandNet,一种基线网络,用于从模糊的手部图像中准确地恢复三维手部网格。我们的BlurHandNet展开模糊输入图像到三维手部网格序列中,以利用模糊输入图像中的时间信息,而以前的工作则输出单个静态手部网格。我们在实验中演示了BlurHand对于从模糊图像中恢复三维手部网格的有用性。所提出的BlurHandNet在模糊图像上产生了更加稳健的效果,同时能够很好地推广到野外图像。训练代码和BlurHand数据集可在https://github.com/JaehaKim97/BlurHand_RELEASE获取。