The majority of approaches for acquiring dense 3D environment maps with RGB-D cameras assumes static environments or rejects moving objects as outliers. The representation and tracking of moving objects, however, has significant potential for applications in robotics or augmented reality. In this paper, we propose a novel approach to dynamic SLAM with dense object-level representations. We represent rigid objects in local volumetric signed distance function (SDF) maps, and formulate multi-object tracking as direct alignment of RGB-D images with the SDF representations. Our main novelty is a probabilistic formulation which naturally leads to strategies for data association and occlusion handling. We analyze our approach in experiments and demonstrate that our approach compares favorably with the state-of-the-art methods in terms of robustness and accuracy.
翻译:以 RGB-D 相机获取密度3D 环境图的多数方法都以静态环境为假设,或拒绝将移动对象作为离子体。然而,移动物体的表示和跟踪在机器人应用或扩大现实方面有很大的潜力。在本文件中,我们提议对具有密度物体级表示的动态 SLM 采用新的方法。我们在当地量子签名远程功能(SDF) 地图中代表僵硬物体,并设计多点跟踪,作为RGB-D 图像与 SDF 表示的直接匹配。我们的主要新颖之处是一种概率性表述,自然导致数据关联和隐蔽处理战略。我们分析了我们的实验方法,并证明我们的方法在稳健性和准确性方面优于最先进的方法。