Transformer models represent the cutting edge of Deep Neural Networks (DNNs) and excel in a wide range of machine learning tasks. However, processing these models demands significant computational resources and results in a substantial memory footprint. While In-memory Computing (IMC) offers promise for accelerating Matrix-Vector Multiplications (MVMs) with high computational parallelism and minimal data movement, employing it for implementing other crucial operators within DNNs remains a formidable task. This challenge is exacerbated by the extensive use of Softmax and data-dependent matrix multiplications within the attention mechanism. Furthermore, existing IMC designs encounter difficulties in fully harnessing the benefits of analog MVM acceleration due to the area and energy-intensive nature of Analog-to-Digital Converters (ADCs). To tackle these challenges, we introduce a novel Compute Analog Content Addressable Memory (Compute-ACAM) structure capable of performing various non-MVM operations within Transformers. Together with the crossbar structure, our proposed RACE-IT accelerator enables efficient execution of all operations within Transformer models in the analog domain. Given the flexibility of our proposed Compute-ACAMs to perform arbitrary operations, RACE-IT exhibits adaptability to diverse non-traditional and future DNN architectures without necessitating hardware modifications. Leveraging the capability of Compute-ACAMs to process analog input and produce digital output, we also replace ADCs, thereby reducing the overall area and energy costs. By evaluating various Transformer models against state-of-the-art GPUs and existing IMC accelerators, RACE-IT increases performance by 10.7x and 5.9x, and reduces energy by 1193x, and 3.9x, respectively
翻译:暂无翻译