Optimal design of distributed decision policies can be a difficult task, illustrated by the famous Witsenhausen counterexample. In this paper we characterize the optimal control designs for the vector-valued setting assuming that it results in an internal state that can be described by a continuous random variable which has a probability density function. More specifically, we provide a genie-aided outer bound that relies on our previous results for empirical coordination problems. This solution turns out to be not optimal in general, since it consists of a time-sharing strategy between two linear schemes of specific power. It follows that the optimal decision strategy for the original scalar Witsenhausen problem must lead to an internal state that cannot be described by a continuous random variable which has a probability density function.


翻译:以著名的Witsenhauseen反例为例,对分布式决策政策的最佳设计可能是一项困难的任务。在本文中,我们描述矢量估值设置的最佳控制设计,假设它产生一个内部状态,可以用具有概率密度函数的连续随机变量来描述。更具体地说,我们提供一个依靠我们先前的经验性协调问题结果的精灵辅助外框。这个解决方案在总体上并不理想,因为它包括两个特定力量线性计划之间的时间共享战略。因此,最初的 scalar Witsenhausesen问题的最佳决定战略必须导致一个无法用具有概率密度函数的连续随机变量来描述的内部状态。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
【斯坦福大学Chelsea Finn-NeurIPS 2019】贝叶斯元学习
专知会员服务
37+阅读 · 2019年12月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
谷歌足球游戏环境使用介绍
CreateAMind
32+阅读 · 2019年6月27日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月29日
Arxiv
0+阅读 · 2021年3月29日
Arxiv
0+阅读 · 2021年3月28日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
【斯坦福大学Chelsea Finn-NeurIPS 2019】贝叶斯元学习
专知会员服务
37+阅读 · 2019年12月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
谷歌足球游戏环境使用介绍
CreateAMind
32+阅读 · 2019年6月27日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员