Estimating the density of a continuous random variable X has been studied extensively in statistics, in the setting where n independent observations of X are given a priori and one wishes to estimate the density from that. Popular methods include histograms and kernel density estimators. In this review paper, we are interested instead in the situation where the observations are generated by Monte Carlo simulation from a model. Then, one can take advantage of variance reduction methods such as stratification, conditional Monte Carlo, and randomized quasi-Monte Carlo (RQMC), and obtain a more accurate density estimator than with standard Monte Carlo for a given computing budget. We discuss several ways of doing this, proposed in recent papers, with a focus on methods that exploit RQMC. A first idea is to directly combine RQMC with a standard kernel density estimator. Another one is to adapt a simulation-based derivative estimation method such as smoothed perturbation analysis or the likelihood ratio method to obtain a continuous estimator of the cdf, whose derivative is an unbiased estimator of the density. This can then be combined with RQMC. We summarize recent theoretical results with these approaches and give numerical illustrations of how they improve the convergence of the mean square integrated error.


翻译:在统计中对连续随机变量X的密度进行了广泛的估计,在对X的独立观测进行先验和人们希望从中估计密度的设置中,对连续随机变量X的密度进行了广泛研究。流行的方法包括直方图和内核密度估计仪。在本审查文件中,我们感兴趣的是蒙特卡洛模拟模型产生的观测结果。然后,我们可以利用分层、有条件的蒙特卡洛和随机化准蒙特卡洛(RQMC)等减少差异的方法,并获得比标准蒙特卡洛对特定计算预算的精确密度估计仪。我们讨论了最近论文中提议的采用这种方法的若干方法,重点是利用RQMC的方法。第一个想法是直接将RQMC与标准内核密度估计仪结合起来。另一个想法是调整基于模拟的衍生物估计方法,例如平滑的扰动分析或随机化准的准蒙特卡洛(RQMC),以便获得持续估计cdf(cdf)的密度的估算器,其衍生物是不带偏见的测算仪。我们讨论了这样做的几种方法,重点是利用RQMC的方法,重点是利用RMC的方法。然后将RMC与这些模型与最近的综合分析结果结合起来。我们可以将这些数值与RQ的模型综合分析。

1
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
61+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月24日
Arxiv
0+阅读 · 2021年5月20日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
61+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员