We tackle the problem of the estimation of the level sets L_f({\lambda}) of the density f of a random vector X supported on a smooth manifold M\subsetR^d , from an iid sample of X. To do that we introduce a kernel-based estimator f^n,h , which is a slightly modified version of the one proposed in [45], and proves its a.s. uniform convergence to f . Then, we propose two estimators of L f ({\lambda}), the first one is a plug-in: L f^n,h ({\lambda}), which is proven to be a.s. consistent in Hausdorff distance and distance in measure, if L f({\lambda}) does not meet the boundary of M . While the second one assumes that L f({\lambda}) is r-convex, and is estimated by means of the r-convex hull of L f^n,h({\lambda}). The performance of our proposal is illustrated through some simulated examples. In a real data example we analyze the intensity and direction of strong and moderate winds.
翻译:我们从 X 的 iid 样本中解决了对一个随机矢量 X 的密度的密度估计 L_f( lambda ) 的 值值问题。 我们从 X 的 iid 样本中选择一个 随机矢量 X 的密度 。 如果 L f( lambda ) 不满足 M 的边界, 我们引入一个基于内核的 spantator f {n, h 是一个稍作修改的版本, 并证明它的 a. s. 。 然后, 我们提议两个 L f ( lambda ) 的测算器( lambda ), 第一个是 插头 : L f} h ( lambda ), 事实证明这是 a.s.s. 。 如果 L f ( lambda ) 无法满足 M 的边界 。 而第二个则假设 L f ( lambda ) 是 r- convex 的, 和 by r- convex boil sult of L fn, h ( lambda ) 。 我们 labda 。 我们的强度建议的表现通过一些 数据强度和强的强度的强度的强度 样示例分析 和强度 和强度 样例 分析。