Empirical optimal transport (OT) plans and distances provide effective tools to compare and statistically match probability measures defined on a given ground space. Fundamental to this are distributional limit laws and we derive a central limit theorem for the empirical OT distance of circular data. Our limit results require only mild assumptions in general and include prominent examples such as the von Mises or wrapped Cauchy family. Most notably, no assumptions are required when data are sampled from the probability measure to be compared with, which is in strict contrast to the real line. A bootstrap principle follows immediately as our proof relies on Hadamard differentiability of the OT functional. This paves the way for a variety of statistical inference tasks and is exemplified for asymptotic OT based goodness of fit testing for circular distributions. We discuss numerical implementation, consistency and investigate its statistical power. For testing uniformity, it turns out that this approach performs particularly well for unimodal alternatives and is almost as powerful as Rayleigh's test, the most powerful invariant test for von Mises alternatives. For regimes with many modes the circular OT test is less powerful which is explained by the shape of the corresponding transport plan.


翻译:实验性最佳运输(OT)计划和距离为比较和统计上匹配在特定地面空间上界定的概率措施提供了有效工具,其中最重要的是分布限制法,我们为循环数据的经验性OT距离得出一个核心限制理论。我们的极限结果一般只需要温和假设,包括冯·米塞斯或包裹的Cauchy家族等突出的例子。最明显的是,在从可比较的概率措施中抽取数据时,不需要假设,这与真实线形成严格对照。当我们的证据依赖Hadamard OT功能的不同性时,靴套原则立即遵循。这为各种统计推论任务铺平了道路,并举例说明了基于无症状的OT对循环分布进行适当测试的良好条件。我们讨论数字执行、一致性和调查其统计能力。为了测试统一性,我们发现这一方法特别适合单式替代品,而且几乎与Rayloigh的测试一样强大,而Rayloigh是Von Mis替代方法最强大的变量测试。对于多种模式的制度来说,圆形的OT测试以相应的计划形状解释不那么强大。

0
下载
关闭预览

相关内容

专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年5月21日
Arxiv
0+阅读 · 2021年5月20日
VIP会员
相关资讯
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员