This paper develops a Hierarchical Bayesian Modeling (HBM) framework for uncertainty quantification of Finite Element (FE) models based on modal information. This framework uses an existing Fast Fourier Transform (FFT) approach to identify experimental modal parameters from time-history data and employs a class of maximum-entropy probability distributions to account for the mismatch between the modal parameters. It also considers a parameterized probability distribution for capturing the variability of structural parameters across multiple data sets. In this framework, the computation is addressed through Expectation-Maximization (EM) strategies, empowered by Laplace approximations. As a result, a new rationale is introduced for assigning optimal weights to the modal properties when updating structural parameters. According to this framework, the modal features weights are equal to the inverse of the aggregate uncertainty, comprised of the identification and prediction uncertainties. The proposed framework is coherent in modeling the entire process of inferring structural parameters from response-only measurements and is comprehensive in accounting for different sources of uncertainty, including the variability of both modal and structural parameters over multiple data sets, as well as their identification uncertainties. Numerical and experimental examples are employed to demonstrate the HBM framework, wherein the environmental and operational conditions are almost constant. It is observed that the variability of parameters across data sets remains the dominant source of uncertainty while being much larger than the identification uncertainties.


翻译:本文根据模式信息,为限定元素(FE)模型的不确定性量化开发了一个高层次贝叶斯模型(HBM)框架,该框架以模型信息为基础,对限定元素(FFE)模型的不确定性进行量化。这一框架采用现有的快速Fourier变换(FFT)方法,从时间-历史数据中确定实验模式参数,并使用一个最大和多孔概率分布的类别,以说明模式参数之间的不匹配情况。它也考虑一个参数化的概率分布,以捕捉多个数据集结构参数的变异性。在这个框架中,计算是通过期待-最大化(EM)战略进行的,得到Laplace近似(Laplace)授权。因此,引入了一个新的原理,以便在更新结构参数时为模型特性属性分配最佳加权。根据这个框架,模型特征的重量等于总体不确定性的反差,包括识别和预测不确定性。拟议框架在从只反应测量的测量结构参数中得出整个结构参数的模型方面是连贯一致的,在计算不同不确定性来源方面是全面的,包括模型和结构参数的变异性,同时,其识别的数值是整个运行参数是长期的。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员