This paper develops a Hierarchical Bayesian Modeling (HBM) framework for uncertainty quantification of Finite Element (FE) models based on modal information. This framework uses an existing Fast Fourier Transform (FFT) approach to identify experimental modal parameters from time-history data and employs a class of maximum-entropy probability distributions to account for the mismatch between the modal parameters. It also considers a parameterized probability distribution for capturing the variability of structural parameters across multiple data sets. In this framework, the computation is addressed through Expectation-Maximization (EM) strategies, empowered by Laplace approximations. As a result, a new rationale is introduced for assigning optimal weights to the modal properties when updating structural parameters. According to this framework, the modal features weights are equal to the inverse of the aggregate uncertainty, comprised of the identification and prediction uncertainties. The proposed framework is coherent in modeling the entire process of inferring structural parameters from response-only measurements and is comprehensive in accounting for different sources of uncertainty, including the variability of both modal and structural parameters over multiple data sets, as well as their identification uncertainties. Numerical and experimental examples are employed to demonstrate the HBM framework, wherein the environmental and operational conditions are almost constant. It is observed that the variability of parameters across data sets remains the dominant source of uncertainty while being much larger than the identification uncertainties.
翻译:本文根据模式信息,为限定元素(FE)模型的不确定性量化开发了一个高层次贝叶斯模型(HBM)框架,该框架以模型信息为基础,对限定元素(FFE)模型的不确定性进行量化。这一框架采用现有的快速Fourier变换(FFT)方法,从时间-历史数据中确定实验模式参数,并使用一个最大和多孔概率分布的类别,以说明模式参数之间的不匹配情况。它也考虑一个参数化的概率分布,以捕捉多个数据集结构参数的变异性。在这个框架中,计算是通过期待-最大化(EM)战略进行的,得到Laplace近似(Laplace)授权。因此,引入了一个新的原理,以便在更新结构参数时为模型特性属性分配最佳加权。根据这个框架,模型特征的重量等于总体不确定性的反差,包括识别和预测不确定性。拟议框架在从只反应测量的测量结构参数中得出整个结构参数的模型方面是连贯一致的,在计算不同不确定性来源方面是全面的,包括模型和结构参数的变异性,同时,其识别的数值是整个运行参数是长期的。